Dynamics in the Uppermost Lower Mantle: Insights into the Deep Mantle Water Cycle Based on the Numerical Modeling of Subducted Slabs and Global-Scale Mantle Dynamics

Author:

Nakagawa Takashi12,Nakakuki Tomoeki3

Affiliation:

1. Department of Mathematical Science and Technology, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan;

2. Current affiliation: Department of Earth Sciences, The University of Hong Kong, Hong Kong;

3. Department of Earth and Planetary Systems Science, Hiroshima University, Higashi-Hiroshima 739-8526, japan;

Abstract

In this review, we address the current status of numerical modeling of the mantle transition zone and uppermost lower mantle, focusing on the hydration mechanism in these areas. The main points are as follows: ( a) Slab stagnation and penetration may play significant roles in transporting the water in the whole mantle, and ( b) a huge amount of water could be absorbed into the deep mantle to preserve the surface seawater over the geologic timescale. However, for further understanding of water circulation in the deep planetary interior, more mineral physics investigations are required to reveal the mechanism of water absorption in the lower mantle and thermochemical interaction across the core–mantle boundary region, which can provide information on material properties to the geodynamics community. Moreover, future investigations should focus on determining the amount of water in the early planetary interior, as suggested by the planetary formation theory of rocky planets. Moreover, the supplying mechanism of water during planetary formation and its evolution caused by plate tectonics are still essential issues because, in geodynamics modeling, a huge amount of water seems to be required to preserve the surface seawater in the present day and to not be dependent on an initial amount of water in Earth's system. ▪ Slab stagnation and penetration of the hydrous lithosphere are essential for understanding the global-scale material circulation. ▪ Thermal feedback caused by water-dependent viscosity is a main driving mechanism of water absorption in the mantle transition zone and uppermost lower mantle. ▪ The hydrous state in the early rocky planets remains to be determined from cosmo- and geochemistry and planetary formation theory. ▪ Volatile cycles in the deep planetary interior may affect the evolution of the surface environment.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3