Plant Molecular Phenology and Climate Feedbacks Mediated by BVOCs

Author:

Satake Akiko1,Hagiwara Tomika1,Nagano Atsushi J.23,Yamaguchi Nobutoshi4,Sekimoto Kanako5,Shiojiri Kaori2,Sudo Kengo67

Affiliation:

1. 1Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan; email: akiko.satake@kyudai.jp

2. 2Faculty of Agriculture, Ryukoku University, Otsu, Japan

3. 3Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan

4. 4Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan

5. 5Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan

6. 6Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

7. 7Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Abstract

Climate change profoundly affects the timing of seasonal activities of organisms, known as phenology. The impact of climate change is not unidirectional; it is also influenced by plant phenology as plants modify atmospheric composition and climatic processes. One important aspect of this interaction is the emission of biogenic volatile organic compounds (BVOCs), which link the Earth's surface, atmosphere, and climate. BVOC emissions exhibit significant diurnal and seasonal variations and are therefore considered essential phenological traits. To understand the dynamic equilibrium arising from the interplay between plant phenology and climate, this review presents recent advances in comprehending the molecular mechanisms underpinning plant phenology and its interaction with climate. We provide an overview of studies investigating molecular phenology, genome-wide gene expression analyses conducted in natural environments, and how these studies revolutionize the concept of phenology, shifting it from observable traits to dynamic molecular responses driven by gene–environment interactions. We explain how this knowledge can be scaled up to encompass plant populations, regions, and even the globe by establishing connections between molecular phenology, changes in plant distribution, species composition, and climate.

Publisher

Annual Reviews

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3