Biology Without Walls: The Novel Endocrinology of Bone

Author:

Karsenty Gerard1,Oury Franck1

Affiliation:

1. Department of Genetics and Development, Columbia University, New York, NY 10032;,

Abstract

Classical studies of vertebrate physiology have usually been confined to a given organ or cell type. The use of mouse genetics has changed this approach and has rejuvenated the concept of a whole-body study of physiology. One physiological system that has been profoundly influenced by mouse genetics is skeletal physiology. Indeed, genetic approaches have identified several unexpected organs that affect bone physiology. These new links have begun to provide a plausible explanation for the evolutionary involvement of hormones such as leptin with bone physiology. These genetic approaches have also revealed bone as a true endocrine organ capable of regulating energy metabolism and reproduction. Collectively, the body of work discussed below illustrates a new and unconventional role for bone in mammalian physiology.

Publisher

Annual Reviews

Subject

Physiology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3