Affiliation:
1. Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pennsylvania 15219;
2. Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
3. Department of Cardiac Surgery, Children's Hospital of Boston and Harvard Medical School, Boston, Massachusetts 02115
Abstract
Surgical replacement of diseased heart valves by mechanical and tissue valve substitutes is now commonplace and enhances survival and quality of life for many patients. However, repairs of congenital deformities require very small valve sizes not commercially available. Further, a fundamental problem inherent to the use of existing mechanical and biological prostheses in the pediatric population is their failure to grow, repair, and remodel. It is believed that a tissue engineered heart valve can accommodate many of these requirements, especially those pertaining to somatic growth. This review provides an overview of the field of heart valve tissue engineering, including recent trends, with a focus on the bioengineering challenges unique to heart valves. We believe that, currently, the key bioengineering challenge is to determine how biological, structural, and mechanical factors affect extracellular matrix (ECM) formation and in vivo functionality. These factors are fundamental to any approach toward developing a clinically viable tissue engineered heart valve (TEHV), regardless of the particular approach. Critical to the current approaches to TEHVs is scaffold design, which must simultaneously provide function (valves must function from the time of implant) as well as stress transfer to the new ECM. From a bioengineering point of view, a hierarchy of approaches will be necessary to connect the organ-tissue relationships with underpinning cell and sub-cellular events. Overall, such approaches need to be structured to address these fundamental issues to lay the basis for TEHVs that can be developed and designed according to truly sound scientific and engineering principles.
Subject
Biomedical Engineering,Medicine (miscellaneous)
Cited by
209 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献