From Stealthy Polymersomes and Filomicelles to “Self” Peptide-Nanoparticles for Cancer Therapy

Author:

Oltra Núria Sancho1,Nair Praful1,Discher Dennis E.1

Affiliation:

1. Biophysical Engineering Laboratory, Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104;, ,

Abstract

Polymersome vesicles and wormlike filomicelles self-assembled with amphiphilic, degradable block copolymers have recently shown promise in application to cancer therapy. In the case of filomicelles, dense, hydrophilic brushes of poly(ethylene glycol) on these nanoparticles combine with flexibility to nonspecifically delay clearance by phagocytes in vivo, which has motivated the development of “self” peptides that inhibit nanoparticle clearance through specific interactions. Delayed clearance, as well as robustness of polymer assemblies, opens the dosage window for delivery of increased drug loads in the polymer assemblies and increased tumor accumulation of drug(s). Antibody-targeting and combination therapies, such as with radiotherapy, are emerging in preclinical animal models of cancer. Such efforts are expected to combine with further advances in polymer composition, structure, and protein/peptide functionalization to further enhance transport through the circulation and permeation into disease sites.

Publisher

Annual Reviews

Subject

Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3