MATERIALS CHARACTERIZATION IN THE ABERRATION-CORRECTED SCANNING TRANSMISSION ELECTRON MICROSCOPE

Author:

Varela M.1,Lupini A.R.1,Benthem K. van1,Borisevich A.Y.1,Chisholm M.F.1,Shibata N.2,Abe E.3,Pennycook S.J.1

Affiliation:

1. Oak Ridge National Laboratory, Condensed Matter Science Division, Oak Ridge, Tennessee 37831;, , , , ,

2. Institute of Engineering Innovation. University of Tokyo, Tokyo 113-8656 Japan;

3. Dept. of Materials Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656;

Abstract

▪ Abstract  In the nanoscience era, the properties of many exciting new materials and devices will depend on the details of their composition down to the level of single atoms. Thus the characterization of the structure and electronic properties of matter at the atomic scale is becoming ever more vital for economic and technological as well as for scientific reasons. The combination of atomic-resolution Z-contrast scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) represents a powerful method to link the atomic and electronic structure to macroscopic properties, allowing materials, nanoscale systems, and interfaces to be probed in unprecedented detail. Z-contrast STEM uses electrons that have been scattered to large angles for imaging. The relative intensity of each atomic column is roughly proportional to Z2, where Z is the atomic number. Recent developments in correcting the aberrations of the lenses in the electron microscope have pushed the achievable spatial resolution and the sensitivity for imaging and spectroscopy in the STEM into the sub-Ångstrom (sub-Å) regime, providing a new level of insight into the structure/property relations of complex materials. Images acquired with an aberration-corrected instrument show greatly improved contrast. The signal-to-noise ratio is sufficiently high to allow sensitivity even to single atoms in both imaging and spectroscopy. This is a key achievement because the detection and measurement of the response of individual atoms has become a challenging issue to provide new insight into many fields, such as catalysis, ceramic materials, complex oxide interfaces, or grain boundaries. In this article, the state-of-the-art for the characterization of all of these different types of materials by means of aberration-corrected STEM and EELS are reviewed.

Publisher

Annual Reviews

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3