Extremely High-Density Longitudinal Magnetic Recording Media

Author:

Weller Dieter1,Doerner Mary F.2

Affiliation:

1. IBM Almaden Research Center, San Jose, California 95120

2. IBM Storage System Division, San Jose, California 95193

Abstract

▪ Abstract  Areal density progress in magnetic recording is largely determined by the ability to fabricate low-noise, granular thin lm media with sufficient stability against thermal agitation to warrant long-term data storage. A key requirement is a medium microstructure with small, magnetically isolated grains to establish optimal macro- and micro-magnetic properties. A lower bound for the minimal average grain diameter, compatible with thermal stability, is imposed by the write field capability of the recording head. It is 10–12 nm assuming maximal writeable coercivities of 400 kA/m (5000 Oe). These are already achieved in today's state-of-the-art CoCr-based thin lm alloy media, leaving little room for further improvements and density gains based on continued grain size reduction. A threefold reduction in grain diameter, however, translating into a tenfold increase in areal density is theoretically possible if write field constraints can be overcome, allowing utilization of magnetically harder alloys. This review emphasizes materials and fabrication aspects behind media for extremely high-density longitudinal magnetic recording. Special attention is paid to thermal stability and write coercivity constraints. Various alternative media designs for extremely high-density recording beyond 40–100 Gbits/inch2 are reviewed.

Publisher

Annual Reviews

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3