Affiliation:
1. Materials and Process Modeling Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-1411;
2. Princeton Materials Institute and Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544-2006;
Abstract
▪ Abstract The kinetic Monte Carlo method is a powerful tool for exploring the evolution and properties of a wide range of problems and systems. Kinetic Monte Carlo is ideally suited for modeling the process of chemical vapor deposition, which involves the adsorption, desorption, evolution, and incorporation of vapor species at the surface of a growing film. Deposition occurs on a time scale that is generally not accessible to fully atomistic approaches such as molecular dynamics, whereas an atomically resolved Monte Carlo method parameterized by accurate chemical kinetic data is capable of exploring deposition over long times (min) on large surfaces (mm2). There are many kinetic Monte Carlo approaches that can simulate chemical vapor deposition, ranging from coarse-grained model systems with hypothetical input parameters to physically realistic atomic simulations with accurate chemical kinetic input. This article introduces the kinetic Monte Carlo technique, reviews some of the major approaches, details the construction and implementation of the method, and provides an example of its application to a technologically relevant deposition system.
Subject
General Materials Science
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献