PROGRESS IN PLASTIC ELECTRONICS DEVICES

Author:

Singh Th. Birendra1,Sariciftci Niyazi Serdar1

Affiliation:

1. Linz Institute of Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University of Linz, A 4040, Linz, Austria;,

Abstract

▪ Abstract  Organic field-effect transistors (OFETs) based on solution-processible polymeric as well as small molecular semiconductors have shown impressive improvements in their performance during recent years. These devices have been developed to realize low-cost, large-area electronic products. This review gives an overview of the materials’ aspect, charge-transport, and device physics of OFETs, focusing mainly on the organic semiconductor and organic dielectric materials and their mutual interface. Recent developments in the understanding of the relationship between microstructure and charge transport, the influence of processing techniques, and gate dielectric are reviewed. Comparative data of charge-carrier mobility of most organic semiconductors have been compiled. Ambipolar charge transport in OFETs and its applications to integrated circuits as well as ambipolar light-emitting transistors are also reviewed. Many interesting questions regarding how the molecular and electronic structures at the interface of the organic semiconductor and organic insulator influence device performance and stability remain to be explored.

Publisher

Annual Reviews

Subject

General Materials Science

Cited by 214 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustainable Devices for Electronic Applications;Reference Module in Earth Systems and Environmental Sciences;2024

2. Synthesis Approaches for Nanodielectric Materials;Emerging Nanodielectric Materials for Energy Storage;2023-10-31

3. Photochemically Induced Marangoni Patterning of Polymer Bilayers;Langmuir;2023-04-17

4. A review on carbon materials production from plastic wastes;Chemical Engineering Journal;2023-02

5. Modeling the electronic structure of organic materials: a solid-state physicist’s perspective;Journal of Physics: Materials;2022-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3