Development of a Combined Biological and Chemical Process for Production of Industrial Aromatics from Renewable Resources

Author:

Sariaslani F. Sima1

Affiliation:

1. DuPont Central Research and Development, Experimental Station, Wilmington, Delaware 19880-0301;

Abstract

Production of industrial aromatic chemicals from renewable resources could provide a competitive alternative to traditional chemical synthesis routes. This review describes the engineering of microorganisms for the production of p-hydroxycinnamic acid (pHCA) and p-hydroxystyrene (pHS) from glucose. The initial process concept was demonstrated using a tyrosine-producing Escherichia coli strain that overexpressed both fungal phenylalanine/tyrosine ammonia lyase (PAL) and bacterial pHCA decarboxylase (pdc) genes. Further development of this bioprocess resulted in uncoupling the pHCA and pHS production steps to mitigate their toxicity to the production host. The final process consists of a fermentation step to convert glucose to tyrosine using a tyrosine-overproducing E. coli strain. This step is followed by a single biotransformation reaction to deaminate tyrosine to pHCA through immobilized E. coli cells that overexpress the Rhodotorula glutinis PAL gene. Finally, chemical decarboxylation of pHCA produces pHS. This multifaceted approach, which integrates biology, chemistry, and engineering, has allowed development of an economical process at scales suitable for industrial applications.

Publisher

Annual Reviews

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3