Affiliation:
1. Sandia National Laboratories, Livermore, California 94551;
Abstract
The quantification of uncertainty in computational fluid dynamics (CFD) predictions is both a significant challenge and an important goal. Probabilistic uncertainty quantification (UQ) methods have been used to propagate uncertainty from model inputs to outputs when input uncertainties are large and have been characterized probabilistically. Polynomial chaos (PC) methods have found increased use in probabilistic UQ over the past decade. This review describes the use of PC expansions for the representation of random variables/fields and discusses their utility for the propagation of uncertainty in computational models, focusing on CFD models. Many CFD applications are considered, including flow in porous media, incompressible and compressible flows, and thermofluid and reacting flows. The review examines each application area, focusing on the demonstrated use of PC UQ and the associated challenges. Cross-cutting challenges with time unsteadiness and long time horizons are also discussed.
Cited by
623 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献