Biomechanics of Microcirculatory Blood Perfusion

Author:

Schmid-Schönbein Geert W.1

Affiliation:

1. Department of Bioengineering and Whitaker Institute for Biomedical Engineering, University of California, San Diego, La Jolla, California 92093–0412;

Abstract

▪ Abstract  The microcirculation represents a region of the circulation in which blood vessels are directly surrounded by the tissue and cells to which they supply nutrients and from which they collect metabolites. The cellular elements that make up the microcirculation have now been identified, and a large body of evidence has become available that provides molecular definitions of these elements. The blood flow is in a domain in which viscous stresses dominate, but the viscoelastic and active properties of cells lead to nonlinear problems. The ability of cells to actively control cytoplasmic mechanical properties and shape, as well as their membrane adhesion, leads to unique cell behavior in microvessels that has a direct influence on organ transport and function. There is also increasing evidence that the properties of the cells are in turn influenced by fluid shear stresses. These issues have greatly expanded the scope of microvascular analysis. The microcirculation is one of the sites in which diseases manifest themselves at an early stage. The application of biomechanical analysis of the microcirculation is starting to focus on diseases. The field is rich with problems of high significance.

Publisher

Annual Reviews

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3