THE ROLE OF VITRIFICATION IN ANHYDROBIOSIS

Author:

Crowe John H.12,Carpenter John F.12,Crowe Lois M.12

Affiliation:

1. Section of Molecular and Cellular Biology, University of California, Davis, California 95616;

2. Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, Colorado

Abstract

▪ Abstract  Numerous organisms are capable of surviving more or less complete dehydration. A common feature in their biochemistry is that they accumulate large amounts of disaccharides, the most common of which are sucrose and trehalose. Over the past 20 years, we have provided evidence that these sugars stabilize membranes and proteins in the dry state, most likely by hydrogen bonding to polar residues in the dry macromolecular assemblages. This direct interaction results in maintenance of dry proteins and membranes in a physical state similar to that seen in the presence of excess water. An alternative viewpoint has been proposed, based on the fact that both sucrose and trehalose form glasses in the dry state. It has been suggested that glass formation (vitrification) is in itself sufficient to stabilize dry biomaterials. In this review we present evidence that, although vitrification is indeed required, it is not in itself sufficient. Instead, both direct interaction and vitrification are required. Special properties have often been claimed for trehalose in this regard. In fact, trehalose has been shown by many workers to be remarkably (and sometimes uniquely) effective in stabilizing dry or frozen biomolecules, cells, and tissues. Others have not observed any such special properties. We review evidence here showing that trehalose has a remarkably high glass-transition temperature (Tg). It is not anomalous in this regard because it lies at the end of a continuum of sugars with increasing Tg. However, it is unusual in that addition of small amounts of water does not depress Tg, as in other sugars. Instead, a dihydrate crystal of trehalose forms, thereby shielding the remaining glassy trehalose from effects of the added water. Thus under less than ideal conditions such as high humidity and temperature, trehalose does indeed have special properties, which may explain the stability and longevity of anhydrobiotes that contain it. Further, it makes this sugar useful in stabilization of biomolecules of use in human welfare.

Publisher

Annual Reviews

Subject

Physiology

Cited by 1117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3