ADVANCED EPR SPECTROSCOPY ON ELECTRON TRANSFER PROCESSES IN PHOTOSYNTHESIS AND BIOMIMETIC MODEL SYSTEMS

Author:

Levanon H.1,Möbius K.2

Affiliation:

1. Department of Physical Chemistry and The Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

2. Department of Physics, Free University Berlin, Berlin, 14195 Germany

Abstract

▪ Abstract  This review focuses on the recent advances in EPR spectroscopy as they are applied both to photoinduced electron transfer in the photosynthetic apparatus and to biomimetic systems. The review deals with time-resolved direct-detection cw and pulsed EPR and ENDOR methods, both at conventional bands [X-(9.5 GHz), K-(24 GHz), and Q-(35 GHz)] and at high frequency bands (W-band, 95 GHz, and even highter frequency bands). EPR studies on photosynthetic and model systems in their doublet, triplet and radical pair states are surveyed, including their static and dynamic properties. Applications of time-resolved EPR in studying photoinduced electron and energy transfer in isotropic and anisotropic environments, and the concepts of electron spin polarization and magnetic field effects in photochemical reactions are also reviewed.

Publisher

Annual Reviews

Subject

Structural Biology,Biophysics

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3