Electrokinetically Controlled Microfluidic Analysis Systems

Author:

Bousse Luc1,Cohen Claudia1,Nikiforov Theo1,Chow Andrea1,Kopf-Sill Anne R.1,Dubrow Robert1,Parce J. Wallace1

Affiliation:

1. Caliper Technologies Corporation, 605 Fairchild Drive, Mountain View, California 94043;

Abstract

▪ Abstract  Electrokinetic forces are emerging as a powerful means to drive microfluidic systems with flow channel cross-sectional dimensions in the tens of micrometers and flow rates in the nanoliter per second range. These systems provide many advantages such as improved analysis speed, improved reproducibility, greatly reduced reagent consumption, and the ability to perform multiple operations in an integrated fashion. Planar microfabrication methods are used to make these analysis chips in materials such as glass or polymers. Many applications of this technology have been demonstrated, such as DNA separations, enzyme assays, immunoassays, and PCR amplification integrated with microfluidic assays. Further development of this technology is expected to yield higher levels of functionality of sample throughput on a single microfluidic analysis chip.

Publisher

Annual Reviews

Subject

Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3