Affiliation:
1. Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712-1074
Abstract
▪ Abstract Polyphenolic-glutathione (GSH) conjugates and their metabolites retain the electrophilic and redox properties of the parent polyphenol. Indeed, the reactivity of the thioether metabolites frequently exceeds that of the parent polyphenol. Although the active transport of polyphenolic-GSH conjugates out of the cell in which they are formed will limit their potential toxicity to those cells, once within the circulation they can be transported to tissues that are capable of accumulating these metabolites. There are interesting physiological similarities between the organs that are known to be susceptible to polyphenolic-GSH conjugate-mediated toxicity. In addition, the frequent localization of γ-glutamyl transpeptidase to cells separating the circulation from a second fluid-filled compartment coincides with tissues that are susceptible either to polyphenolic-GSH conjugate-induced toxicity or to quinone and reactive oxygen species–induced toxicity. Polyphenolic-GSH conjugates therefore contribute to the nephrotoxicity, nephrocarcinogenicity, and neurotoxicity of a variety of polyphenols.
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献