GEOTHERMAL ENERGY FROM THE EARTH: Its Potential Impact as an Environmentally Sustainable Resource

Author:

Mock John E.12,Tester Jefferson W.12,Wright P. Michael12

Affiliation:

1. Energy Laboratory, 1Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

2. Energy & Geoscience Institute, University of Utah, Salt Lake City, Utah 84108

Abstract

▪ Abstract  Geothermal energy technology is reviewed in terms of its current impact and future potential as an energy source. In general, the geothermal energy resource base is large and well distributed globally. Geothermal systems have a number of positive social characteristics (they are simple, safe, and adaptable systems with modular 1–50 MW [thermal (t) or electric (e)] plants capable of providing continuous baseload, load following, or peaking capacity) and benign environmental attributes (negligible emissions of CO2, SOx, NOx, and particulates, and modest land and water use). Because these features are compatible with sustainable growth of global energy supplies in both developed and developing countries, geothermal energy is an attractive option to replace fossil and fissile fuels. In 1997, about 7,000 MWe of base-load generating capacity and over 15,000 MWt of heating capacity from high-grade geothermal resources are in commercial use worldwide. A key question is whether these levels can grow to a point where geothermal energy is more universally available and thus have a significant impact on global energy supplies in the twenty-first century. Such an achievement will require the economic development of low-grade resources. The current status of commercial and emerging technologies for electric power production and direct heat use is reviewed for the major geothermal resources including hydrothermal, geopressured, hot dry rock, and magma. Typically, high-temperature resources (>150°C) provide base-load generating capacity while lower-temperature resources provide energy for geothermally assisted heat pumps and for direct use in domestic, agricultural, and aquacultural heating applications. Critical development issues relating to resource quality and distribution, drilling costs, and reservoir productivity are discussed in the context of their economic impact on production costs. Advanced drilling and improved heat mining methods are suggested as approaches to increase the worldwide use of geothermal energy by reducing field development costs. With these improvements, lower-grade resources can compete in growing global energy markets that are currently controlled by abundant and low-cost fossil fuels.

Publisher

Annual Reviews

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3