THE INSECT VOLTAGE-GATED SODIUM CHANNEL AS TARGET OF INSECTICIDES

Author:

Zlotkin Eliahu1

Affiliation:

1. Department of Cell and Animal Biology, Institute of Life Sciences, The Hebrew University, Jerusalem 91904 Israel;

Abstract

▪ Abstract  Examination of the function, chemistry, and pharmacology of the voltage-gated insect sodium channel (ISC) reveals that the ISC closely resembles its vertebrate counterpart in electrophysiology and ion conductance, primary structure and allocation of all functional domains, and its pharmacological diversity and flexibility exhibited by the occurrence of different allosterically coupled receptor-binding sites for various neurotoxicants. The toxicants include several groups of insecticides, namely DDT and its analogues, pyrethroids, N-alkylamides, and dihydropyrazoles, which affect channel gating and ion permeability. Despite their similarity, the insect and vertebrate channels are pharmacologically distinguishable, as revealed by the responsiveness of the heterologously expressed Drosophila para clone to channel modifiers and blockers and the occurrence of the insect-selective sodium channel neurotoxins derived from arachnid venoms presently used for the design of recombinant baculovirus-mediated selective bioinsecticides. The pharmacological specificity of the ISC may lead to the design of insect-selective toxicants, and its pharmacological flexibility may direct the use of ISC insecticides for resistance management. Insecticide resistance [such as knockdown resistance (KDR)] is acquired by natural selection and operated by increased metabolism, channel mutagenesis, or both. The resistance issue can be dealt with in several ways. One is by simultaneous application of low doses of synergistic, allosterically coupled mixtures (thus delaying or preventing the onset of resistance). An alternative is to replace an insecticide to which resistance was acquired by channel mutation with a different ISC toxicant to which increased susceptibility was conferred by the same mutation. Such a possibility was exemplified by a significant increase in susceptibility to N-alkylamides, as well as an insect-selective neurotoxin revealed by KDR insects. Third, both of these methods can be combined. Thus owing to its pharmacological uniqueness, the ISC may serve as a high-priority target for future selective and resistance-manageable insecticides.

Publisher

Annual Reviews

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3