Performance of hybrid gelatin-PVA bioinks integrated with genipin through extrusionbased 3D bioprinting: An in vitro evaluation using human dermal fibroblasts

Author:

Masri Syafira,Maarof Manira,Aziz Izhar Abd,Idrus Ruszymah,Fauzi Mh Busra

Abstract

3D bioprinting technology is a well-established and promising advanced fabrication technique that utilizes potential biomaterials as bioinks to replace lost skin and promote new tissue regeneration. Cutaneous regenerative biomaterials are highly commended since they benefit patients with larger wound sizes and irregular wound shapes compared to the painstaking split-skin graft. This study aimed to fabricate biocompatible, biodegradable, and printable bioinks as a cutaneous substitute that leads to newly formed tissue post-transplantation. Briefly, gelatin (GE) and polyvinyl alcohol (PVA) bioinks were prepared in various concentrations (w/v); GE (6% GE: 0% PVA), GPVA3 (6% GE: 3% PVA), and GPVA5 (6% GE: 5% PVA), followed by 0.1% (w/v) genipin (GNP) crosslinking to achieve optimum printability. According to the results, GPVA5_GNP significantly presented at least 590.93 &plusmn; 164.7% of swelling ratio capacity and optimal water vapor transmission rate (WVTR), which is <1500 g/m2 /h to maintain the moisture of the wound microenvironment. Besides, GPVA5_GNP is also more durable than other hydrogels with the slowest biodegradation rate of 0.018 &plusmn; 0.08 mg/h. The increasing amount of PVA improved the rheological properties of the hydrogels, leading the GPVA5_GNP to have the highest viscosity, around 3.0 &plusmn; 0.06 Pa.s. It allows a better performance of bioinks printability via extrusion technique. Moreover, the cross-section of the microstructure hydrogels showed the average pore sizes >100 &micro;m with excellent interconnected porosity. X-ray diffraction (XRD) analysis showed that the hydrogels maintain their amorphous properties and were well-distributed through energy dispersive X-ray after crosslinking. Furthermore, there had no substantial functional group changes, as observed by Fourier transform infrared spectroscopy, after the addition of crosslinker. In addition, GPVA hydrogels were biocompatible to the cells, effectively demonstrating >90% of cell viability. In conclusion, GPVA hydrogels crosslinked with GNP, as prospective bioinks, exhibited the superior properties necessary for wound healing treatment.

Publisher

AccScience Publishing

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3