Process study for directed energy deposition of 316L stainless steel with TiB2 metal matrix composites

Author:

Ang Yao Ting,Sing Swee Leong,Lim Joel Choon Wee

Abstract

In addition to laser powder bed fusion, directed energy deposition (DED) is also gaining interest as an effective metal additive manufacturing technique. Due to its system configuration, it is more efficient and flexible for materials development. Therefore, it can be used for processing of metal matrix composites (MMCs) through the use of powder mixture as feedstock. 316L stainless steel has high corrosion resistance, biocompatibility, and ductility. Several studies have shown the feasibility of using DED to process 316L stainless steel. The material properties of 316L stainless steel can be improved using reinforcement particles such as TiB2 to form MMCs. In this study, the effects of process parameters on microstructure and mechanical properties of 316L stainless steel reinforced with TiB2 (316L/TiB2) MMC were studied. The process parameters, including laser power, scanning speed, and hopper speed, were varied and analyzed using Taguchi L9 array. It was found that the process parameters have insignificant effect on the bulk density of the samples produced. Through this study, it is also found that tumble mixing was not suitable for the powder feedstock preparation for MMCs to be processed by DED. The microstructure of DED 316L/TiB2 MMC samples consists of columnar and equiaxed grains. Columnar grains were located within the layers while equiaxed grains were located at the interlayer zones. Fine sub-grains were also observed within these grains and their boundaries were enriched with molybdenum and chromium segregations. Precipitates containing titanium were also observed to segregate at the sub-grain boundaries. Finally, the Vickers microhardness of the DED 316L/TiB2 MMC was found to be similar to pure 316L stainless steel produced by DED.

Publisher

AccScience Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3