Enzymatic post-crosslinking of printed hydrogels of methacrylated gelatin and tyramine-conjugated 8-arm poly(ethylene glycol) to prepare interpenetrating 3D network structures

Author:

Liang Jia,Wang Zhule,A. Poot Andreas,W. Grijpma Dirk,J. Dijkstra Piet,Wang Rong

Abstract

Methacrylated gelatin (GelMA) has been intensively studied as a 3D printable scaffold material in tissue regeneration fields, which can be attributed to its wellknown biological functions. However, the long-term stability of photo-crosslinked GelMA scaffolds is hampered by a combination of its fast degradation in the presence of collagenase and the loss of physical crosslinks at higher temperatures. To increase the longer-term shape stability of printed scaffolds, a mixture of GelMA and tyramine-conjugated 8-arm PEG (8PEGTA) was used to create filaments composed of an interpenetrating network (IPN). Photo-crosslinking during filament deposition of the GelMA and subsequent enzymatic crosslinking of the 8PEGTA were applied to the printed 3D scaffolds. Although both crosslinking mechanisms are radical based, they operate without interference of each other. Rheological data of bulk hydrogels showed that the IPN was an elastic hydrogel, having a storage modulus of 6 kPa, independent of temperature in the range of 10 – 40°C. Tensile and compression moduli were 110 kPa and 80 kPa, respectively. On enzymatic degradation in the presence of collagenase, the gelatin content of the IPN fully degraded in 7  days, leaving a stable secondary crosslinked 8PEGTA network. Using a BioMaker bioprinter, hydrogels without and with human osteosarcoma cells (hMG-63) were printed. On culturing for 21  days, hMG-63 in the GelMA/8PEGTA IPN showed a high cell viability (>90%). Thus, the presence of the photoinitiator, incubation with H2 O2 , and mechanical forces during printing did not hamper cell viability. This study shows that the GelMA/8PEGTA ink is a good candidate to generate cell-laden bioinks for extrusion-based printing of constructs for tissue engineering applications.

Publisher

AccScience Publishing

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3