Biological Processes that Prepare Mammalian Spermatozoa to Interact with an Egg and Fertilize It

Author:

Tulsiani Daulat R. P.1,Abou-Haila Aïda2

Affiliation:

1. Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

2. UFR Biomédicale, Université Paris Descartes, 75270 Paris Cedex 06, France

Abstract

In the mouse and other mammals studied, including man, ejaculated spermatozoa cannot immediately fertilize an egg. They require a certain period of residence in the female genital tract to become functionally competent cells. As spermatozoa traverse through the female genital tract, they undergo multiple biochemical and physiological changes collectively referred to as capacitation. Only capacitated spermatozoa interact with the extracellular egg coat, the zona pellucida. The tight irreversible binding of the opposite gametes triggers a Ca2+-dependent signal transduction cascade. The net result is the fusion of the sperm plasma membrane and the underlying outer acrosomal membrane at multiple sites that causes the release of acrosomal contents at the site of sperm-egg adhesion. The hydrolytic action of the acrosomal enzymes released, along with the hyperactivated beat pattern of the bound spermatozoon, is important factor that directs the sperm to penetrate the egg coat and fertilize the egg. The sperm capacitation and the induction of the acrosomal reaction are Ca2+-dependent signaling events that have been of wide interest to reproductive biologists for over half a century. In this paper, we intend to discuss data from this and other laboratories that highlight the biological processes which prepare spermatozoa to interact with an egg and fertilize it.

Funder

National Institute of Child Health & Human Development

Publisher

Hindawi Limited

Subject

General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3