Algorithmic and computational comparison of metagenome assemblers

Author:

SHARMA ANU,MISHRA DWIJESH CHANDRA,BUDHLAKOTI NEERAJ,RAI ANIL,LAL SHASHI BHUSHAN,KUMAR SANJEEV

Abstract

Assembly of genome sequences of a microbial community is computationally challenging and complex than its single genome counterparts. Keeping in view the volume, diversity and varied abundance of different microbes, number of metagenome assemblers have been developed addressing specific associated computational issues mainly following De Bruijn Graph (DBG) and Overlap Layout Consensus (OLC) approaches. It is very pertinent to understand different computational approaches and issues of metagenomic assembly to further improve them with respect to time and computational resource requirements. Therefore, the main objective of this article is to discuss various metagenomics assemblers with respect to their development addressing major computational issues. Initially the computational perspective of single genome assemblers based on OLC and DBG graph construction approaches was described. This is followed by review of metagenomic assemblers with respect to the algorithm implemented for addressing issues in metagenome assembly. Further, performance of some of the popular metagenome assemblers were empirically evaluated with respect to their run time and memory requirements by taking diversified benchmark metagenomics data at ICAR-IASRI, New Delhi in 2019. It was concluded that performance of assemblers varied considerably on these datasets and there is further need to make an effort to develop new tools or to modify the existing ones using efficient algorithms and data structures.

Publisher

Indian Council of Agricultural Research, Directorate of Knowledge Management in Agriculture

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3