Affiliation:
1. Department of Chemistry (J.C., R.F.C.), Department of Electrical and Computer Engineering (S.S., F.K.T.), and Department of Civil and Environmental Engineering (H.L., M.P.F.), Rice University, 6100 Main St., Houston, Texas 77005; and University of Houston-Clear Lake, Houston, Texas 77058 (T.H.)
Abstract
A laser spectrometer based on difference frequency generation (DFG) was deployed for real-time long-term monitoring of HCHO concentrations at an environmental monitoring site located at Deer Park, Texas, in the Greater Houston area. Three HCHO concentration measurements were made during the periods of July 20–31 (period I), August 2–14 (period II), and August 24–September 25 (period III), 2002. In periods I and II, differences in HCHO concentrations are apparent between day and night measurements, with elevated concentrations during daylight hours. Most of the HCHO peak values are less than 20 ppbV except for two intense peaks on August 02 (∼25 ppbV) and August 04 (∼30 ppbV). The formaldehyde concentration levels in ambient air at the measurement site are produced mainly by the photochemical oxidation of volatile organic compounds (VOCs) caused by intense sunlight during periods I and II. This observation was made based on a comparison with the ozone concentration, solar radiation, temperature, relative humidity, and wind speed data obtained from the Texas Commission on Environmental Quality (TCEQ). During period III, data collected by a time-integrating wet-chemical technique are compared to the data collected by the spectroscopic instrument.
Subject
Spectroscopy,Instrumentation
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献