Analysis of Electromodulated Optical Second-Harmonic Response at a Metal/Electrolyte Interface Using a Local Surface-Site Charge-Displacement Model

Author:

Lambrakos S. G.1,Trzaskoma-Paulette P. P.1

Affiliation:

1. Materials Science and Technology Division (S.G.L.) and Chemistry Division (P.P.T.-P.), Naval Research Laboratory, Washington, D.C. 20375-5000

Abstract

We present aspects of a general approach for the analysis of second-harmonic response at a metal/electrolyte interface. Analysis is based on a combination of principles from classical system identification and pattern recognition with a previously derived explicit and general representation of modulated second-harmonic response on the molecular level. This study emphasizes the adaptation of our approach and associated representation for the formulation of feature variables whose purpose is to extract features associated with observed trends in modulated second-harmonic signals. Our development introduces the concept of representing the multidimensional processes responsible for second-harmonic generation by means of a one-dimensional stationary stochastic process. This approach allows us to extract trends in experimental data correlated with molecular level charge displacements and resonant effects. The paper concludes with a series of analyses that illustrate the applicability of our approach and suggest possible pathways for its extension.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3