Identification of Recently Handled Materials by Analysis of Latent Human Fingerprints Using Infrared Spectromicroscopy

Author:

Grant Ashleigh1,Wilkinson T. J.1,Holman Derek R.1,Martin Michael C.1

Affiliation:

1. Advanced Light Source Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720

Abstract

Analysis of fingerprints has predominantly focused on matching the pattern of ridges to a specific person as a form of identification. The present work focuses on identifying extrinsic materials that are left within a person's fingerprint after recent handling of such materials. Specifically, we employed infrared spectromicroscopy to locate and positively identify microscopic particles from a mixture of common materials in the latent human fingerprints of volunteer subjects. We were able to find and correctly identify all test substances based on their unique infrared spectral signatures. Spectral imaging is demonstrated as a method for automating recognition of specific substances in a fingerprint. We also demonstrate the use of attenuated total reflectance (ATR) and synchrotron-based infrared spectromicroscopy for obtaining high-quality spectra from particles that were too thick or too small, respectively, for reflection/absorption measurements. We believe the application of this rapid, nondestructive analytical technique to the forensic study of latent human fingerprints has the potential to add a new layer of information available to investigators. Using fingerprints to not only identify who was present at a crime scene, but also to link who was handling key materials, will be a powerful investigative tool.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3