Development of a Planar Array Infrared Reflection Spectrograph for Reflection—Absorption Spectroscopy of Thin Films at Metal and Water Surfaces

Author:

Kim Young Shin1,Snively Christopher M.1,Rabolt John F.1,Chase D. Bruce1

Affiliation:

1. Departments of Materials Science and Engineering (Y.S.K., C.M.S., J.F.R.) and Chemical Engineering (C.M.S.), University of Delaware, Newark, Delaware 19716; and Central Research and Development, DuPont Experimental Station, Wilmington, Delaware 19880-0328 (D.B.C.)

Abstract

Planar array infrared (PA-IR) spectroscopy offers several advantages over Fourier transform infrared (FT-IR) methods, including ultrafast speed (< 100 μs temporal resolution) and excellent sensitivity. However, obtaining spectra in the range of 1800 to 1000 cm−1 of films at the air–water interface remains difficult due to the poor IR reflectivity of water, the extremely low concentration of the thin film on the water subphase, and the interference of water bands. In this study, we report a new planar array infrared reflection spectrograph (PA-IRRS), which has several advantages over conventional approaches. This instrument can record sample and reference spectra simultaneously with an instrumental setup that is the same as that of a single-beam instrument by splitting the incident infrared beam into two sections on a plane mirror (H) or a water trough. With this design, the instrument can accommodate large infrared accessories, such as a water trough, without a loss of infrared beam intensity. Water bands can be subtracted to obtain a high-quality spectrum for poly(L-lactic acid) Langmuir film on the water subphase with a resolution of about 6 cm−1 in 10.8 s. Hence, this PA-IRRS system has great potential for investigating the time-resolved dynamics of a broad range of Langmuir films, such as cellular membranes or biopolymers, on the water subphase.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3