Near-Infrared Spectroscopic Monitoring of the Water Adsorption/Desorption Process in Modern and Archaeological Wood

Author:

Inagaki Tetsuya1,Yonenobu Hitoshi1,Tsuchikawa Satoru1

Affiliation:

1. Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.I., S.T.); and Naruto University of Education, Naruto 772-8502, Japan (H.Y.)

Abstract

We investigated the adsorption/desorption mechanism of water and the variation of water adsorption for modern and archaeological wood using near-infrared spectroscopy. A mixture model of water was used to decompose the near-infrared difference spectra into three components (free water molecules (S0), those with one OH group engaged in hydrogen bonding (S1), and those with two OH groups engaged in hydrogen bonding (S2)) based on a principal component analysis. The variations of each water component with relative humidity could be explained by proposing a model that describes water absorption in three stages. It was concluded that the aging phenomenon in wood is due to the decrease of adsorption sites on hemicellulose and amorphous cellulose.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3