A Noninvasive Method for Assessing Interior Skin Damage Caused by Chronological Aging and Photoaging Based on Near-Infrared Diffuse Reflection Spectroscopy

Author:

Miyamae Yuta1,Yamakawa Yumika1,Kawabata Marie1,Ozaki Yukihiro1

Affiliation:

1. POLA Chemical Industries, Inc., Corporate Planning Department, 27-1 Takashimadai, Kanagawa-ku, Yokohama 221-0833 Japan (Y.M., Y.Y., M.K.); and Department of Chemistry and Research Center for Near-Infrared Spectroscopy, School of Science and Technology, Kwansei-Gakuin University, Sanda 669-1337, Japan (Y.O.)

Abstract

This paper reports a noninvasive method for evaluating skin aging based on near-infrared diffuse reflectance (NIR-DR) spectroscopy. Skin aging can be attributed to photoaging and chronological aging. Both types of aging are heavily involved in the skin changes that occur as we get older, for example, wrinkles or sagging skin. Our goal is to develop a noninvasive way to assess changes taking place inside the skin for each type of aging by using NIR-DR spectroscopy. Interior skin damages caused by photoaging and chronological aging were studied for an ultraviolet-B (UVB)-irradiated hairless mouse group (24 mice) and a non-irradiated group (29 mice) by using NIR-DR spectroscopy and principal component analysis (PCA). The results suggested the possibility of monitoring the contribution and the quantitative assessment of both types of aging taking place inside the skin by using the 5990–5490 cm−1 and 5000–4480 cm−1 regions of NIR-DR spectra. For the photoaging, structural changes in proteins are most clearly reflected by a shift of the band near 4880 cm−1 due to a combination of amide A and amide II modes. On the other hand, the chronological aging is associated with a change in collagen quantity as is seen in the intensity changes in NIR bands assigned to collagen. NIR-DR spectroscopy and PCA may allow us to noninvasively assess the degree of photoaging and chronological aging as the degeneration of elasticity in collagen protein and the degradation of protein quantity, respectively.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3