Determination of Copper in A533b Steel for the Assessment of Radiation Embrittlement Using Laser-Induced Breakdown Spectroscopy

Author:

Ernst Wolfgang E.1,Farson Dave F.1,Sames D. Jason1

Affiliation:

1. Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802 (W.E.E.); Department of Industrial, Welding, and Systems Engineering, Ohio State University, Columbus, Ohio 43210 (D.F.F.); and High Energy Processing Department, Applied Research Laboratory, The Pennsylvania State University, P.O. Box 30, State College, Pennsylvania 16804-0030 (D.J.S.)

Abstract

Determination of radiation embrittlement in nuclear reactor pressure vessels is crucial to assessing safe operative lifetimes for many aging nuclear power plants. Conservative nuclear fluence estimates and trace impurity diagnosis of the weldment material are the basis of radiation embrittlement analysis. Copper is thought to be a key impurity contributing to radiation embrittlement. In this paper, the application of laser-induced breakdown spectroscopy (LIBS) as a means to assess radiation embrittlement by the detection and quantification of copper in A553b steel was investigated. A LIBS configuration completely coupled by fiber optics was attempted, but because of low laser power and fiber losses, fiber-optic delivery of the laser beam was unsuccessful. Consequently, hard optics (lenses and mirrors) were employed for laser beam delivery. The plasma emission was delivered successfully via fiber optics to the detection apparatus. Copper measurements were made from custom-fabricated steel samples. Comparison of the LIBS results to an independent atomic absorption spectrophotometry (AAS) analysis showed LIBS to be of comparable accuracy, especially in low-level copper samples.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3