Temperature and Emission Spatial Profiles of Laser-Induced Plasmas during Ablation Using Time-Integrated Emission Spectroscopy

Author:

Mao Xianglei L.1,Shannon Mark A.1,Fernandez Alberto J.1,Russo Richard E.1

Affiliation:

1. Lawrence Berkeley Laboratory, Energy and Environment Division, Berkeley, California 94720 (X.L.M., R.E.R.); University of Illinois at Urbana-Champaign, Mechanical Engineering Department, Urbana, Illinois 61801 (M.A.S.); and Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela (A.J.F.)

Abstract

Emission spectra and excitation temperature spatial profiles, within laser-induced plasmas from solid copper targets, are characterized as a function of laser power density with the use of time-integrated emission spectroscopy. This research shows how the measured axial spatial emission intensity of the expanding plasma can be influenced by the time integration. The excitation temperatures calculated from these integrated emission-line intensities may not coincide with the actual temperature spatial profile. Transient plasma dynamics during time-integrated intensity measurements can influence both the excitation temperature and the atomic number density of the emitting species. As a demonstration of the influence of fluid dynamics on time-integrated emission measurements, a shock-wave model was used as an example to show how the spatial emission intensity profile of a laser-induced plasma can be affected by transient expansion. Even for time-resolved emission measurements, the high velocity of a laser-induced plasma can influence spatial intensity data close to the target surface. The ability to accurately measure spatial emission intensity and temperature behavior is shown to be related to the integration time vs. plasma expansion velocity.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3