One- and Two-Dimensional Infrared Time-Resolved Spectroscopy Using a Step-Scan FT-IR Spectrometer: Application to the Study of Liquid Crystal Reorientation Dynamics

Author:

Nakano Tatsuhiko1,Yokoyama Toru1,Toriumi Hirokazu1

Affiliation:

1. Nippon Bio-Rad Laboratories, Analytical Instruments Division, 3-6 Kachidoki 5-chome, Chuo-ku, Tokyo 104, Japan (T.N., T. Y.); and Department of Chemistry, College of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153, Japan (H.T.)

Abstract

This paper describes the advances in step-scan FT-IR time-resolved spectroscopy (TRS) and its application to the study of liquid crystal reorientation dynamics. The most important advantage of step-scan interferometry lies in the fact that the optical retardation of the interferometer is held constant during the sampling of interferogram elements, and consequently the spectral multiplexing is decoupled from the time dependence of data collection. This feature of step-scan interferometry allows us to perform both time-domain (one-dimensional time-resolved spectroscopy: 1D TRS) and frequency-domain (two-dimensional frequency correlation spectroscopy: 2D IR) dynamic experiments without the need to deconvolute the time dependence of the sample response from that of the data collection process. The design of the step-scan FT-IR spectrometer used in this study (Bio-Rad FTS60A/896), the experimental setup for 1D and 2D TRS measurements, and the results of a performance test are detailed. The FT-IR TRS techniques applied to the dynamic analysis of liquid crystals have revealed new information that enables us to penetrate into detailed sub-molecular mechanisms of the electrically induced liquid crystal reorientation. The results include the following: (1) 1D FT-IR TRS with microsecond time resolution has been able to follow the real-time transition dynamics of each individual functional group in the molecule; (2) 2D FT-IR TRS, capable of analyzing spatial and temporal correlations between reorientational motions of different sub-molecular segments, has shown that a flexible chain appended to a rigid core of the liquid crystalline molecule undergoes a fast local motion in addition to the rotational relaxation motion of the entire molecule; and (3) 2D frequency correlation analyses have been able to isolate a hidden absorption band and have suggested a possible assignment of this new band. It is emphasized that all these results have been obtained by taking the advantage of time-resolved spectroscopy that provides both temporal and spectral information simultaneously. The results presented in this paper should illustrate the potential applicability of FT-IR TRS to the study of a wide variety of time-dependent phenomena.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3