In situ Spectroelectrochemical Study of the Anodic Dissolution of Silicon by Potential-Difference and Electromodulated FT-IR Spectroscopy

Author:

Ozanam F.1,Da Fonseca C.1,Rao A. Venkateswara1,Chazalviel J.-N.1

Affiliation:

1. Laboratoire de Physique de la Matîere Condensée, CNRS-École Polytechnique, 91128 Palaiseau, France

Abstract

The anodic dissolution of p-Si has been investigated by in situ infrared spectroscopy. The combination of potential-difference and electromodulated spectroscopies allows for the acquisition of a rather complete picture of the various regimes of the dissolution. After a review of general principles for studying electrochemical interfaces, a study of the interfacial oxide layer formed in the electropolishing regime is presented. Quantitative analysis shows that the thickness and quality of the oxide (density and defect content) depend upon electrode potential. Free-carrier absorption detected in electromodulated spectra shows that the blocking character of the oxide is correlated with the buildup of a stoichiometric oxide of low defectivity at sufficiently positive potentials. Furthermore, the dynamic response to the modulation reveals that oxides formed at weak positive potentials interact with electrolyte species through electro-induced adsorptions/desorptions on charged SiOH sites. At more positive potentials, charge is transported across the oxide by charged defects which could be associated with tricoordinated, positively charged SiO species. Finally, results obtained during porous silicon formation at weak positive potentials are presented. Potential-difference spectroscopy indicates that the electrode exhibits a very large specific surface area, and that the surface is covered by SiH bonds. Electromodulated infrared spectroscopy reveals that the SiH species are generated upon anodic current flowing and that the breaking of these bonds is the rate-limiting step of the anodic reaction. These unexpected results have given rise to the elaboration of new microscopic models for the direct anodic dissolution of silicon in fluoride electrolytes.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3