Polarization-Sensitive CARS of Excited-State Rhodamine 6G: Induced Anisotropy Effects on Depolarization Ratios

Author:

Lucassen Gerald W.1,De Boeij Wim P.1,Greve Jan1

Affiliation:

1. Applied Optics Group, Department of Applied Physics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

Resonance polarization-sensitive coherent anti-Stokes Raman scattering (PS CARS) spectra of the electronic ground state and excited singlet S1 state of rhodamine 6G in ethanol were obtained with the use of the pump-probe technique with nanosecond time resolution. Variation of the polarization orientation of the pump laser beam showed differences in the excited-state spectra due to optically induced anisotropy. The pure electronic susceptibility of ground-state rhodamine 6G was shown to be small in comparison with nonresonant susceptibility of the solvent, and was neglected in further analyses. The pure electronic susceptibility of excited rhodamine 6G was examined by coherent ellipsometry. The complex third-order susceptibility was analyzed by means of a nonlinear least-squares fit program that provides detailed information on the Raman vibration parameters, including depolarization ratios and phases. In the isotropic case the measured depolarization ratios are close to 1/3, whereas in the anisotropic case, ground-state depolarization ratios are 0.5–0.65 and in the excited state 0.17–0.22. Estimated depolarization ratio changes in ground-state and excited-state rhodamine 6G are in agreement with theoretically predicted values in the case of induced anisotropy under the assumption of parallel dipole moments of the CARS process. The effects of possible changed molecular structure or symmetry and changed enhancement of different electronic transitions cannot be determined without making some assumptions about one of these effects. The obtained phase differences reflect different enhancements and vibronic coupling for ground-state and excited-state vibrations. The ground-state and excited-state hyperpolarizabilities, [Formula: see text], of rhodamine 6G were estimated to be 3.8·10−35 esu and 27.4·10−35 esu, respectively.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference24 articles.

1. Brakel R., Schneider F. W., in Advances in Nonlinear Spectroscopy, Clark R. J. H., Hester R. E., Eds. (John Wiley, Chichester, 1988), Vol. 15, p. 149.

2. Transient Raman detection of hot S1 trans-stilbene in solution by “Optical depletion timing”

3. Polarization-sensitive resonance coherent anti-Stokes Raman spectroscopy of S1 trans-stilbene in solution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3