Affiliation:
1. Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208 (T.F.C., H.T.S., S.M.A.); and Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822 (T.F.C.)
Abstract
We compare relative performances of flat-tipped, beveled (two-fiber and six-around-one), and single-lensed focused fiber-optic Raman probes and, where feasible, evaluate the utility of optical filters for reducing fiber background. The sensitivity profile of each probe is determined by measuring the relative intensity of light backscattered off a flat surface as a function of distance from the probe tip. The experimental results are compared with a simple light-cone-overlap model incorporating fiber numerical aperture, fiber and immersion medium refractive indices, separation between excitation and collection fibers, number of fibers, and fiber bevel angle and/or lens focal length. The model and sensitivity profiles are used to interpret the sampling regions for Raman spectra obtained by using each of the probes with a clear, transparent sample (single-crystal sparry calcite), a white, partially transparent sample (acetaminophen tablet), and a set of organic liquids of varying refractive index. The sensitivity of the tested commercial lensed probe drops off symmetrically about the focal point. For both solid samples, the intensity of fiber background follows a profile determined primarily by laser backscattering off the surface, whereas the sample Raman signal follows a profile dependent upon sampling depth.
Subject
Spectroscopy,Instrumentation
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献