Affiliation:
1. Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
Abstract
A simple and effective approximate method is presented for the calculation of the optical constants of neat liquids from transmission measurements. The method calculates the apparent absorbance due to reflection losses by treating the liquid cell as a single slab of the window material. This approach makes the method far simpler than the exact iterative method that has been used to develop secondary infrared intensity standards and that applies Fresnel's equations to each interface in the cell. However, for all but the strongest absorption bands, the approximate method gives imaginary refractive indices that are within ∼1% of those from the exact method. The method is, thus, useful for nearly all common liquids in cells with alkali halide windows for all but the strongest bands. The effect of the size of the mismatch between the real refractive indices of sample and windows has been explored to some extent. It is recommended that results from the approximate method be regarded with caution if the refractive indices of the sample and windows differ by more than 0.15.
Subject
Spectroscopy,Instrumentation
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献