Evaluation of Calibration Methods for Zeeman Graphite Furnace Atomic Absorption Spectrometry Using Computer Modeling

Author:

Harnly James M.1

Affiliation:

1. USDA, ARS, Beltsville Human Nutrition Research Center, Building 161, BARC-East, Beltsville, Maryland 20705

Abstract

Computer modeling was used to compare calibration curves and relative concentration errors for normal, linearized, and three-field Zeeman GF-AAS. The model assumed that either photon shot noise or the combination of photon shot and analyte fluctuation noise were limiting and that the sole source of nonlinearity was stray light. For absorbance, the calibration range and the relative concentration error for all three methods are almost identical. The difference is a reduced-sensitivity curve for three-field Zeeman, which offers a relative concentration error advantage in the concentration region where the most sensitive curve rolls over. For integrated absorbance, the sum of absorbances over the analytical peak, linearized Zeeman provides a significant relative concentration error advantage over the other methods at the high concentration end of the calibration curve. The calibration range is effectively extended by at least 1.5 orders of magnitude. This advantage arises from integration of absorbances which have a linear relationship to concentration. At high concentrations, absorbances computed for normal and three-field Zeeman are nonlinear with respect to concentration. Three-field Zeeman offers no advantage over normal Zeeman for integrated absorbance.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3