DRIFTS and Raman Investigation of N2 and O2 Adsorption on Zeolites at Ambient Temperature

Author:

Smudde George Hc.1,Slager Terry L.1,Coe Charles G.1,MacDougall James E.1,Weigel Scott J.1

Affiliation:

1. Air Products and Chemicals, Inc., Allentown, Pennsylvania 18195

Abstract

Diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) and Raman spectroscopy were used to examine N2 and O2 adsorption on cation-exchanged (K, Na, Sr, Ca, and Li) low silica X (LSX) zeolites. IR and Raman absorption bands were observed for the molecular vibration of adsorbed N2 and O2 at room temperature and atmospheric pressure. The intensity (in Kubelka-Munk units) of the IR band increased with N2 pressure and mirrored the adsorption isotherm for N2. Both O2 and N2 displayed a similar dependence of the molecular vibrational frequency on cation charge density, which suggests that both gases are interacting directly with the cations. The vibrational frequencies for adsorbed N2 and O2 were more sensitive to the cation charge density than to framework Al content. Infrared studies of N2 and O2 on mixed cation forms of LSX show that N2 interaction was localized near individual cations within the sorption cavity of the zeolite. Thus, adsorbed N2 can be used to probe accessibility of specific cations within the zeolite framework. The spectroscopic data are consistent with the theory that the stronger interaction of N2 over O2 is caused by the stronger influence of the electric field with the larger quadrupole of N2.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference32 articles.

1. Coe C. G., in Gas Separation Technology, Vansant E. F. and DeWolfs R., Eds. (Elsevier, Amsterdam, 1990), p. 149.

2. Polyvalent Cation Exchanged X Zeolites with Improved Gas Separation Properties

3. Induced overtones of homonuclear diatomics in zeolitic matrices

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3