Raman and NIR Spectroscopic Methods for Determination of Total Dietary Fiber in Cereal Foods: Utilizing Model Differences

Author:

Archibald D. D.1,Kays S. E.1,Himmelsbach D. S.1,Barton F. E.1

Affiliation:

1. Quality Assessment Research Unit, USDA Agricultural Research Service, P. O. Box 5677, Russell Research Center, Athens, Georgia 30604-5677

Abstract

This work evaluates the complementarity in the predictive ability of three Raman and three near-infrared reflectance (NIRR) partial least-squares regression (PLSR) models for total dietary fiber (TDF) determinations of a diverse set of ground cereal food products. For each spectral type (R or N), models had previously been developed from smoothed (D0), first-derivative (D1), or second-derivative (D2) spectral data. The NIRR and Raman models tend to have very different sets of outliers and uncorrelated errors in TDF determination. For a single spectral type, the prediction errors of various preprocessing methods are partially complementary. The samples are very diverse in terms of composition, but the main problem groups were narrowed to high-fat, high-bran, and high-germ samples, as well as and those containing synthetic fiber additives. Raman models perform better on the high-fat samples, while NIRR models perform better with high-bran and high-synthetic samples. Raman models were better able to accommodate a wheat germ sample, even though this sample type was poorly represented by the calibration set. Two methods are presented for utilizing the complementarity of the spectral and processing techniques: one involves simple averaging of predictions and the other involves avoidance of outliers by using statistics generated from the sample spectrum to choose the best model(s) for determination of the TDF value. The single best model (N-D1) has a root-mean-squared prediction error of 2.4% TDF. The best model of prediction averages yields an error of 1.9% (combining N-D0, N-D1, N-D2, R-D0, and R-D1). An error of 1.9% was also obtained by choosing a single prediction from the six models by using statistics to avoid outliers. With the selection of the best three models and averaging their predictions, an error of 1.5% was achieved.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3