Multivariate Determination of Glucose in Whole Blood Using Partial Least-Squares and Artificial Neural Networks Based on Mid-Infrared Spectroscopy

Author:

Bhandare Prashant1,Mendelson Yitzhak1,Peura Robert A.1,Janatsch Günther1,Kruse-Jarres Jürgen D.1,Marbach Ralf1,Heise H. Michael1

Affiliation:

1. Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609 (P.B., Y.M., R.A.P.); Institut für Klinische Chemie und Laboratoriumsmedizin, Katharinenhospital, Kriegsbergstrasse 60, D-7000 Stuttgart 1, Germany (G.J., J.D.K.); and Institut für Spektrochemie und angewandte Spektroskopie, Bunsen-Kirchhoff-Strasse 11, D-4600 Dortmund 1, Germany (R.M., H.M.H.)

Abstract

The infrared (IR) spectra of whole blood EDTA samples, in the range between 1500 and 750 cm−1, obtained from the patient population of a general hospital, were used to compare different multivariate calibration techniques for quantitative glucose determination. Ninety-six spectra of whole undiluted blood samples with glucose concentration ranging between 44 and 291 mg/dL were used to create calibration models based on a combination of partial least-squares (PLS) and artificial neural network (ANN) methods. The prediction capabilities of these calibration models were evaluated by comparing their standard errors of prediction (SEP) with those obtained with the use of PLS and principal component regression (PCR) calibration models in an independent prediction set consisting of 31 blood samples. The optimal model based on the combined PLS-ANN produced smaller SEP values (15.6 mg/dL) compared with those produced with the use of either PLS (21.5 mg/dL) or PCR (24.0 mg/dL) methods. Our results revealed that the combined PLS-ANN models can better approximate the deviations from linearity in the relationship between spectral data and concentration, compared with either PLS or PCR models.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3