Terminal and Intermediate Combustion Products Observed from 2.0 to 5.0 μm in Flame/Furnace Infrared Emission Spectrometry

Author:

Zhang Yunke1,Busch Marianna A.1,Busch Kenneth W.1

Affiliation:

1. Department of Chemistry, Baylor University, B.U. Box 97348, Waco, Texas 76798-7348

Abstract

A computer-controlled, dispersive, scanning spectrometer with a wavelength range from 1 to 15 μm is described and used to study the flame/furnace infrared emission (FIRE) spectra of combustion products formed in a small analyte/air flame and in an electrically heated furnace (570°C), operated with and without a column of heated hopcalite (370°C). When lead selenide was used as the detector, the emission spectra of the combustion products of pentane, benzene, dichloromethane, and methanol could be measured over the wavelength range from 2 to 5 μm. In addition to discrete emission bands from terminal combustion products such as CO2, H2O, and HCl, discrete emission from CO (4.6–4.9 μm) and continuum emission associated with soot formation were also observed under oxygen-limited combustion of benzene, dichloromethane, and possibly pentane. Bands centered at approximately 3.3 μm (3030 cm−1) and 3.5 μm (2857 cm−1) were observed in several spectra and attributed to C-H stretching in intermediate combustion products, with the 3.5- μm band being assigned to the stretching of the carbonyl hydrogen of aldehydes (formaldehyde, in particular). On the basis of these results, the “anomalous emission” observed at 3.8 μm in previous studies employing electrothermal excitation is attributed either to the presence of formaldehyde or to the formation of particulate carbon, which are both associated with conditions favoring the incomplete combustion of hydrocarbons.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3