Method for the Classification of Biological FT-IR Spectra Prior to Quantitative Analysis

Author:

Cadet Frédéric1

Affiliation:

1. Laboratoire de Biochimie, Faculté des Sciences, Université de la Réunion, 15 avenue René Cassin, BP 7151, 97715 Saint-Denis Messag Cedex 9, Réunion, France-DOM

Abstract

Several methods have been proposed with the aim of improving the precision of quantitative measurements of biological components (baseline correction, classification, elimination of unwanted components, etc.). In this context, we propose a classification method of biological samples (raw sugar cane juices) before sucrose content prediction is performed. The method consisted of isolating the two most dissimilar individuals from a large calibration family of mid-FT-IR spectra, and, by successive principal component analysis (PCA) and principal component regression (PCR), a family composed of a few individuals was constituted. Each individual from this family represented the first spectrum of the corresponding classes that were ultimately formed. The classification of the remaining samples from the calibration family was carried out by the mobile centers method, that is, by the measurements of the Euclidian distances. This procedure improved the precision of the predictions. The mean and standard deviation (SD) of the differences between predicted and reference values were, respectively, −1.62 × 10−3 and 0.308 before classification and 2.38 × 10−3 and 0.254 after classification. The procedure developed in this paper first allowed a qualitative classification of spectra without knowledge of their chemical composition, and second, improved the precision of the quantitative predictions.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3