Application of Micro-FT-IR Spectroscopy to Individual Hydrocarbon Fluid Inclusion Analysis

Author:

Barres O.1,Burneau A.1,Dubessy J.1,Pagel M.1

Affiliation:

1. Laboratoire de Spectrométrie de Vibrations, Université de Nancy I, BP 239,54506 Vandoeuvre Les Nancy Cedex, France (O.B., A.B.); and Centre de Recherches sur la Géologie de l'Uranium et GS CNRS-CREGU, BP 23, 54501 Vandoeuvre Les Nancy Cedex, France (J.D., M.P.)

Abstract

Infrared spectra of fluid inclusions are obtained with a Fourier transform infrared miscrospectrometer. The experimental conditions and the analytical use are discussed. Interferograms are recorded in the transmission mode. The quality of spectra is good for fluid inclusions with diameters larger than 30 μm, the spectral resolution being 4 cm−1 and the recording time 200 s. Interferograms made of inclusions with diameters of less than 20 μm are reached in the same amount of time, but with worse spectral resolution. Infrared spectra are usually only suitable above 2000 cm−1, because of the absorption of most of the inclusion-bearing host minerals, the thickness of which should never exceed 1 mm. This fact further limits their interpretation, as the inclusion composition is complex. However, complementary information can be obtained in the 4600–4000-cm−1 range for hydrocarbon inclusions with a thickness that is larger than some tens of micrometers. This shows that it is necessary to use a detector which is as sensitive as possible towards high frequencies. A comparison of the current performances of infrared and Raman spectroscopies as analytical methods for investigating fluid inclusions is presented. The important improvement of better spatial resolution and the corresponding possibility of being able to characterize heterogeneities, in comparison to limitations with classical dispersive infrared spectrometry, are discussed. Methane, carbon dioxide, liquid water, aromatic ester, and linear or branched alkanes are identified in several samples. It is also possible to estimate the mean ratio of alkane CH2/CH3 groups. In some cases, the intensity of the absorptions indicates the inclusion effective thickness and the mole fraction ratio.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3