Consistency in Circle Cell FT-IR Analysis of Aqueous Solutions

Author:

Braue Ernest H.1,Pannella Michael G.1

Affiliation:

1. Department of Chemistry, The Pennsylvania State University, Mont Alto, Pennsylvania 17237 (E.H.B.); and U.S. Army Medical Research Institute of Chemical Defense, Building E-3100, Aberdeen Proving Ground, Maryland 21010-5425 (M.G.P.)

Abstract

The CIRCLE CELL®, based on the cylindrical internal reflection technique (CIR), has become a popular FT-IR accessory because it allows for easy collection of IR spectra from aqueous solutions. In this paper we describe a detailed study of the quality of quantification possible with the use of aqueous acetone mixtures over a concentration range of 0.01 to 90% (w/w). During a period of four months, the method's sensitivity, accuracy, precision, and time stability were evaluated. With the use of a Nicolet 60SX FT-IR, an MCT-A detector, 500 scans, and a 300-s sampling delay, five sets of triplicate runs, approximately one month apart, were made at each of 10 concentrations. Our results indicate the following conclusions: (1) quantification by peak height gives better precision, whereas peak area gives a more linear response and correlation with Beer's law over a large concentration range; (2) water bands produce spectral artifacts during subtraction, (3) repositioning of the CIRCLE CELL® optical bench between runs and the micro-boat sampling cell between samples critically affects the quantification results; (4) deviations from Beer's law are caused by chemical effects and insufficient resolution errors; and (5) the reliable sensitivity limit is 0.05% w/w. These findings suggest that precise quantitative analysis of aqueous solutions is now a practical method with the use of FT-IR spectroscopy.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference35 articles.

1. Barnes Analytical Division, Spectra-Tech, Inc., 652 Glenbrook Road, Stamford, Connecticut.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3