Terrain Effects on the 13 April 2018 Mountainburg, Arkansas EF2 Tornado

Author:

Anderson Matthew E.1,Schneider Doug G.2,Buckles Jeremy L.2,Bodine David J.3,Reinhart Anthony E.4,Satrio Martin A.5,Maruyama Takashi6

Affiliation:

1. NOAA/National Weather Service, Huntsville, AL

2. NOAA/National Weather Service, Morristown, TN

3. Advanced Radar Research Center and School of Meteorology, University of Oklahoma, Norman, Oklahoma

4. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

5. School of Meteorology, University of Oklahoma, Norman, Oklahoma

6. Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Abstract

Storm-scale interactions with rough terrain are complex. Terrain has been theorized to impact the strength of low-level mesocyclones. Surface roughness and modifications of the surrounding environment also may impact tornadogenesis or tornado intensity. The Mountainburg, Arkansas EF2 tornado on 13 April 2018 traveled along a path with minor variations in intensity and elevation throughout most of the nearly 19-km (11.8 mi) damage path as the storm moved along a river valley. A detailed damage survey showed that the tornado then made an abrupt ascent of more than 200 m (656 ft) in the last 2 km (1.2 mi) before dissipating. By examining model soundings and conducting a detailed terrain analysis, this study examines what role terrain may have had in channeling the momentum surge and enhancing the low-level vorticity to influence tornadogenesis. Other storm-scale factors are investigated to determine their potential impact on the demise of the tornado. The differential reflectivity column is studied to determine if the updraft was weakening. The relative position of the tornado and mesocyclone also are examined as the tornado ascended the terrain and dissipated to determine whether the change in elevation impacted the overall strength of the storm and to evaluate whether the storm was undergoing a traditional occlusion cycle. Finally, a large-eddy simulation model is used to explore physical changes in a tornado encountering terrain similar to the Mountainburg, Arkansas, tornado near its demise.

Publisher

National Weather Association

Subject

Management Science and Operations Research,Atmospheric Science,Computers in Earth Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3