Hybrid filament wound composite tubes (aramide fiber/glass fiber)-epoxy resins and (carbon fibers/glass fiber)-epoxy resins: Volumetric, mechanical and hydraulic characteristics

Author:

Radulović JovanORCID

Abstract

In this paper volumetric, mechanical and hydraulic characteristics of filament wound composite one fiber tubes and hybrid tubes are presented. Composite hybrid materials, produced by filament winding technology, are categorized according to different ways of classification of hybrid materials. Four fibrous reinforcement agents (glass G600, polyamide aromatic K49, carbon T300 and carbon T800) and two impregnation agent systems (epoxy 0164 and epoxy L20) are used for manufacturing of filament wound tubes. Density, tensile strength, specific tensile strength, hydraulic burst pressure and specific hydraulic burst pressure of two filament wound glass fiber/epoxy resins tubes (as starting materials) and of twelve filament wound hybrid tubes are investigated. Four highest values of tensile strength and hydraulic burst pressure are of the next schedule: hybrid tubes mark G600-T800/L20 (the highest), hybrid tubes mark G600-T800/0164, hybrid tubes mark G600-T300/L20 and hybrid tubes mark G600-K49/L20. Also, a row of four highest specific tensile strength and highest specific hydraulic burst pressure begins with hybrid tubes mark G600-T800/L20, but the schedule of the next three tubes is different due to density of aramide composite materials (hybrid tubes mark G600-K49/L20, hybrid tubes mark G600-T800/0164 and hybrid tubes mark G600-K49/0164). All filament wound tubes (single fiber tubes and hybrid tubes) with epoxy L20 have a slightly lower density value but higher values of tensile strength, specific tensile strength, hydraulic burst pressure and specific hydraulic burst pressure than appropriate tubes impregnated with epoxy 0164. Obtained results in this testing indicate and emphasize the importance of advanced reinforcing agents (aramide roving and carbon fibers), of impregnating agents (epoxy resin systems) and of the density of hybrid tubes, especially with aramide roving.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3