Identifying the impact of methanol-diesel fuel on the environment using a four-stroke CI engine

Author:

Hassan Qais,Alalwan Hayder,Mohammed Malik,Mohammed Mohammed

Abstract

This work aims to investigate the influence of blending diesel fuel with different percentages of methyl alcohol on reducing the emission of exhaust gases. The study was performed using a laboratory diesel engine, which is an internal combustion, single-cylinder, and four-strokes engine. The study involved investigating three volume percentages of methyl alcohol (methanol), which are 7, 14, and 21. The emission results of the blending fuels were compared with that of non-blending fuel. The analysis of the exhaust gases was done under three engine loads, which are two, four, and six N.m, with a constant speed of 2000 rpm. The analysis involves measuring carbon oxides (CO and CO2), unburned hydrocarbons (HC), nitrogen oxides (NOx), and particulate matter (PM). The results showed a positive impact of methanol on reducing the emission of all gases except NOx. Increasing the methanol ratio increases the reduction of the emissions of CO, CO2, PM, and HC, where the highest reductions of the gaseous emissions were observed with the percentage of 21% of methanol under all engine loads. Specifically, the drop recorded by using 21% of methanol was 69-83% for CO, 60-69% for CO2, 80-83% for HC, and 25-30% for PM. These reductions in emissions are assigned to the high oxygen content of methyl alcohol that influences the complete combustion of diesel. On the other hand, the NOx emission increased by 135-346%, but a possible reduction in these emissions can be achieved through a proper engine modification. The results of this investigation provide essential insights that would inspire using methanol as a fuel additive with modifying the diesel engines to be compatible with blending fuel.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3