Non-stationary influence function for an unbounded anisotropic Kirchhoff-Love shell

Author:

Lokteva Natalia,Serdyuk Dmitry,Skopintsev Pavel

Abstract

The purpose of this article is to investigate the process of the influence of a nonstationary load on an arbitrary region of an elastic anisotropic cylindrical shell. The approach to the study of the propagation of forced transient oscillations in the shell is based on the method of the influence function, which represents normal displacements in response to the action of a single load concentrated along the coordinates. For the mathematical description of the instantaneous concentrated load, the Dirac delta functions are used. To construct the influence function, expansions in exponential Fourier series and integral Laplace and Fourier transforms are applied to the original differential equations. The original integral Laplace transform is found analytically, and for the inverse integral Fourier transform, a numerical method for integrating rapidly oscillating functions is used. The convergence of the result in the Chebyshev norm is estimated. The practical significance of the work is that the obtained results can be used by scientists or students to solve new problems of dynamics of cylindrical shells on an elastic basis under pulse loads. The found non-stationary influence function opens up possibilities for studying the stress-strain state, solving nonstationary inverse and contact problems for anisotropic shells, studying nonstationary dynamics in the case of nonzero initial conditions, and also when constructing integral equations of the boundary element method.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Reference27 articles.

1. Gorshkov, A.G., Medvedsky, A.L., Rabinsky, L.N., Tarlakovsky, D.V. (2004). Waves in continuous media. FIZMATLIT, Moscow;

2. Bogdanovich, A.E. (1985). Deformation and strength of cylindrical composite shells under dynamic loads. Zinatne, Riga;

3. Bogdanovich, A.E. (1987). Nonlinear problems of the dynamics of cylindrical composite shells. Zinatne, Riga;

4. Koshkina, T.B. (1984). Deformation and strength of reinforced composite cylindrical shells under dynamic compressive loads. Academy of Sciences of the Latvian SSR, Riga;

5. Bazilevs, Y., Pigazzini, M.S., Ellison, A., Kim, H. (2018). A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part I: Basic theory and modeling of delamination and transverse shear. Computational Mechanics, vol. 62, no. 3, 563-585, Doi: 10.1007/s00466-017-1513-1;

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3