GÖRÜNTÜ ÖN İŞLEME TEKNİKLERİ VE DERİN ÖĞRENME İLE BİTKİ ZARARLILARININ SINIFLANDIRILMASI

Author:

Eze Şevval Ezgi1ORCID,Kaplan Berkaya Selcan1ORCID

Affiliation:

1. ESKİŞEHİR TEKNİK ÜNİVERSİTESİ

Abstract

Bitki zararlılarının erken dönemde, etkili bir şekilde tespit edilip kontrol altına alınmalarını sağlamak bitkilerin korunmasına, ürün veriminin artırılmasına ve tarım ekonomisindeki kayıpların azaltılmasına yardımcı olmaktadır. Bu çalışmada, bitki zararlılarının sınıflandırılması için derin öğrenme tabanlı yöntemler önerilmiştir. Aynı zamanda çeşitli görüntü ön işleme tekniklerinin performansa etkisi araştırılmıştır. Önerilen modeller, önceden eğitilmiş beş farklı derin sinir ağı (GoogLeNet, ResNet-18, ResNet-101, VGG-16 ve VGG-19) ile transfer öğrenimi ve bu ağlardan çıkarılan öznitelikler ile Destek Vektör Makinesi sınıflandırıcısını kullanmaktadır. Ayrıca yeşil renk kanalı çıkarımı, veri artırımı, histogram eşitleme, derin öğrenme tabanlı segmentasyon ile arka plan eliminasyonu gibi farklı görüntü ön işleme teknikleri ayrı ayrı ve birlikte kullanılarak kapsamlı bir performans analizi yapılmıştır. Deneyler, sırasıyla 10 ve 40 bitki zararlısı türü içeren Li ve D0 veri setleri üzerinde gerçekleştirilmiştir. Deneyler sonucunda iki veri setinde de veri artırımı ve ResNet-101 ağı ile transfer öğrenimi yöntemi kullanılarak sırasıyla %96.36 ve %99.63 doğruluk ile en yüksek performanslar elde edilmiştir. Deneysel sonuçlar, önerilen modellerin bitki zararlısı kontrolünde etkin bir şekilde kullanılabileceğini göstermektedir.

Publisher

Muhendislik Bilimleri ve Tasarim Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3