IMPROVING THE QUANTIFICATION ACCURACY OF Tc-99m MIBI DUAL-PHASE PARATHYROID SPECT/CT: A MONTE CARLO SIMULATION STUDY

Author:

GÜVENİŞ Albert1ORCID,AYTAÇ Bahadır1ORCID

Affiliation:

1. BOGAZICI UNIVERSITY, INSTITUTE OF BIOMEDICAL ENGINEERING

Abstract

Objective: Quantitative parathyroid SPECT imaging is a technique used to assess Primary hyperparathyroidism that may have potential in the identification and differentiation of parathyroid lesions as well as the estimation of disease severity. Studying the effect of data acquisition parameters on the quantification error is important for maximizing the accuracy of this diagnostic technique. In this study we examine the effects of different data acquisition parameters, namely the type of collimator, scatter correction status and reconstruction iteration number on the quantification accuracy using computer simulation. Methods: The SIMIND Monte Carlo Simulation and CASToR iterative reconstruction program was used to simulate a commercially available SPECT camera (Siemens Symbia Intevo Gamma Camera) with a crystal size of 29.55cm and 128x128 matrix size. A digital cylindrical phantom filled with water was constructed. A 0.36 cm radius spherical adenoma filled with a uniform 1MBq radioactivity is placed within the phantom. Low-Energy High Resolution (LEHR) and Low Energy Ultra High Resolution (LEUHR) collimator models are tested. Along with the presence of Scatter correction and differing iteration numbers (x16, x32). An image FOV based calibration method was used to gather quantitative information and checked against the input radioactivity. Results: The presence of scatter correction caused a 15-20% relative improvement in quantification accuracy. The optimal number of iterations produced a 10% relative improvement. Overall, accuracies as good as 7% in estimated activity concentration could be observed. Conclusion: The optimization of parameters can provide a significant improvement in quantification accuracy.

Publisher

Izmir Democracy University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3